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Radar remote sensing provides useful information to differentiate river ice conditions and ice 

cover types in large rivers. However, false classifications are common, especially at the end of 

winter, due to water on ice as well as wet snow. These situations can present challenges to end 

users, such as water resources managers and flood forecasters.  In this study, we design a logic-

driven assessment to refine existing classifications to distinguish between areas of water or wet 

snow on ice and open water. It is uncommon for river segments to experience ice cover, 

followed by open water, then ice cover again, within three consecutive radar images. Our 

decision tree analysis therefore assumes that river segments that are classified as water, but 

classified as ice in the radar images before and after, represent water or wet snow on ice. We 

examine the potential of this approach on two rivers in the Yukon Territory, Canada. The 

Äshèyi Chù (Aishihik River) is a narrow, regulated river with a relatively steep slope (0.3%) 

and commonly experiences flood issues at freeze-up. The Chu kon’ dëk (Yukon River at 

Dawson) is a much larger, low gradient (0.04%) river with a history of ice jam related flooding.  

Pixels are tested based on this concept, and a clustering approach is applied to reduce noise. 

The success of the algorithm is assessed using drone imagery and Sentinel-2 optical imagery. 

We show that using logic can offer ways to refine river ice classification, that is meaningful to 

the end user.   
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1. Introduction 

Winter hydrological processes can have significant impacts on cold region ecosystems (Prowse 

2001) and infrastructure (Burrell et al. 2021). In turn, flow regulation during months of high 

energy demand is also known to affect ice processes (Huokuna et al. 2022) with potential 

consequences on channel stability and habitats. Understanding the impact of high and varying 

streamflow on river ice and hydraulic conditions can be challenging, especially at locations 

with limited road access. Therefore, remote sensing represents an opportunity to collect 

valuable river ice coverage data and observations that can inform short- and long-term decision 

making. 

 

Ice detection using radar waves is based on differences in signal backscatter for surfaces of 

different roughness. Calm water is a specular surface, which reflects the radar signal away from 

the satellite. This will show up as a dark area in the resulting image, since no or minimal signal 

is received by the satellite. Ice, however, has varying degrees of surface roughness, which 

causes the radar signal to interact with the surface and consequently results in backscatter of a 

portion of the signal to the satellite, with pixel brightness proportional to the backscatter ratio. 

In principle, a smooth ice cover, such as sheet ice, results in some backscatter, while a rough 

ice cover, such as an ice jam, causes more backscatter (Palomaki and Sproles 2022). This basic 

concept allows us to produce classifications that distinguish open water from ice cover, and 

even different types of ice, uncompromised  by cloud cover or daylength. Over the years, 

several jurisdictions have used satellite-based ice maps to provide users with critical river 

channel information for purposes such as supporting winter navigation (e.g., on the St. 

Lawrence River and Estuary) or forecasting water level variations caused by a sudden change 

in ice condition (e.g., on the Peace River in Alberta).  

 

Classification, however, becomes more complex when we find water or wet snow on top of an 

ice cover (Stonevicius, Uselis, and Grendaite 2022). During a water on ice event, the radar 

waves will interact with the water on top of the ice instead of the ice underneath (van der 

Sanden, Drouin, and Geldsetzer 2021). C-band synthetic aperture radar (SAR) products are 

commonly used for river ice detection, due to their high spatial resolution and frequent repeat 

cycle. When snow is dry, it is basically invisible to C-band waves (wavelength of 5.6 cm), and 

the waves interact with the surface underneath instead. If snow is wet and hence saturated, 

however, the interaction of the waves with snow is similar to that of water, and the signal is 

reflected away from the satellite (Bernier et al. 2017; Lievens et al. 2019). As a result, during 

a water or wet snow on ice event, minimal signal will be returned to the satellite and the spectral 

signature is like the one of calm water (van der Sanden et al. 2021). This presents challenges 

for the end users, such as flood forecasters, who need to know if a section of river is still ice 

covered or if the ice cover has moved downstream.  

 

Since wet snow or water on ice conditions push the boundaries of the satellite capabilities, we 

propose here to make use of knowledge we have about rivers and ice cover formation to drive 

a refinement of classification using logic.  For instance, it is well known that an ice cover, 

especially when it is thick and complete, cannot melt suddenly when upstream ice is present 

over a long distance, since any heat carried by the river would melt the upstream ice cover. 

Moreover, a sudden local breakup event usually results from a water level or flow fluctuation, 

with pieces of broken ice cover (i.e., ice floes) accumulating somewhere downstream. Finally, 

a complete ice cover is not likely to form overnight if there is a complete ice cover in the river 

reach located immediately upstream. Since several processes may cause water to accumulate 

on the ice cover (e.g. an increase in discharge in a small river, rain-on-snow, high air 
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temperatures, etc.), it can be assumed that the ice cover, although no longer detected by radar, 

is still in place and relatively intact. 

 

In this paper, we test a logic-driven approach to refine river ice classification.  We examine 

river ice classification products as a time series and use an algorithm to look at radar 

classification product sequences that exhibit ice, then water, and then ice again.  

 

2. Study Area 

Two rivers were examined in this study – the Äshèyi Chù (Aishihik River), which is a small 

river used for power generation in southwest Yukon, and the Chu kon’ dëk (Yukon River at 

Dawson), which is the major watercourse flowing through the Yukon Territory. Both rivers 

experience flooding issues due to ice jams and are hence examined for changes in ice cover 

conditions. 

 

The Äshèyi Chù (Aishihik River) is located on the traditional territory of the Champagne and 

Aishihik First Nations (CAFN), in the southwest of the Yukon Territory, Canada. It is fed 

primarily by Äsheyi Män (Aishihik Lake). The CAFN settlement of Äsheyi (Aishihik) is 

situated at the north end of the lake. The name “Äsheyi” is of Tlingit origin and means “the 

head of the lake” (Champagne and Aishihik First Nations 2023). The watershed area of the 

river at Canyon is 4,300 km (Mcparland, Mckillop, and Pearson 2021). It drains into the 

Dezadeash River, which outlets into the Alsek River and then into the North Pacific Ocean. 

The Äshèyi Chù is a narrow (15m to 50m wide) river with a relatively steep slope (0.3%). This 

river is highly dynamic, with a frequency of 0.08 to 0.26 meander cut-offs/year. In 1975, the 

Äshèyi Chù became a regulated river for power hydroelectricity production with the 

establishment of the Aishihik Generating Station (AGS) (Mcparland et al. 2021). Winter flows, 

largely imposed by daily fluctuations in energy demand, have historically varied from less than 

5 m3/s to more than 20 m3/s. From confluence of the East- and West-Aishihik Rivers, the river 

flows for approximately 30 km and passes through the CAFN community of Canyon. Flooding 

issues occur at that location, but also at several floodplain locations, mainly due to mid-winter 

ice jams, with consequent overflow and aufeis development. 

 

The Chu kon’ dëk is the most significant and largest river of the territory. The origin of its 

waters extends as far as the Atlin Lake area of northern British Colombia, more specifically 

from the discharge coming out of the Juneau Icefield.  The river flows through the Yukon 

Territory and the U.S. state of Alaska, covering a distance of around 3185 km. Previous work 

suggests that the gradient of the river is around 0.05% when considering the 900 km stretch of 

channel from Whitehorse, the capital of the Yukon Territory, to the Alaska Border (Saal, Boyd, 

and Turcotte 2023). Dawson City, located along the Tágà Shäw, is susceptible to both ice jam 

and open water flooding. The Chu kon’ dëk at Dawson City is approximately 360 m wide and 

has a depth of about 4 m with an annual flow ranging from about 500 m3/s at the end of winter 

to about 10,000 m3/s in June. The community has been subject to several floods, with the 1979 

ice jam flood being the most notorious event on record. Although mitigation structures exist 

around the community, flood risk can still be reduced, including through flood forecasting 

(Turcotte and Saal 2022). 

 

3. Input Data Sources 

Two classification products we tested. The product of the narrow Äshèyi Chù is based on 

Sentinel-1 vertical-vertical (VV) imagery, while the product of the Chu kon’ dëk stems from 

Radarsat-2 and Radarsat Constellation Mission (RCM) data. 
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The first classification product was created as part of a research project conducted by YukonU 

on the Äshèyi Chu. The objective of the project was to develop a river ice model that can 

inform flow management in a perspective of reducing downstream impacts (Fang et al. 2023; 

Saal, Turcotte, et al. 2023) Since river ice model development depends on the availability of 

data about ice coverage conditions on the Äshèyi Chu, an algorithm was developed to detect 

ice and water using Sentinel-1 imagery. 

 

One goal was to identify locations of early season ice bridging, therefore distinguishing the 

specific type of ice was not necessary. Additionally, ice type would have been difficult to 

identify, given the small width of the river. While SAR technology is applied to large rivers of 

Canada, the ability of Sentinel-1 to detect ice on a narrow, 15 to 50m-wide river, had, to our 

knowledge, not been previously explored. In this hydrological context, Sentinel-1’s 10 m grid 

cells in interferometric wide swath appear coarse. This is further complicated by the appearance 

of speckle. While filters are applied when working on wider rivers, we did not have this luxury 

due to the decrease in resolution resulting from filtering. The approach that was applied instead 

was to calculate a significant cluster size of a given classification. If a class cluster was below 

threshold, the area was removed as speckle and did not receive a classification. The resulting 

product contains the classes water and ice, as well as no data areas that were removed as 

speckle. Another layer of complexity materialized after December 23rd, 2021, when the 

Sentinel-1 platform lost half of its capacity due to the failure of the Sentinel-1B satellite 

(European Space Agency 2023). As a result, only Sentinel-1 imagery of the ascending path 

was explored during this study. 

 

C-Core, a company specialized in remote sensing based in Newfoundland in Eastern Canada, 

started to produce ice maps on the Chu kon’ dëk near Dawson City for the Yukon Government 

(Department of Environment) in 2015. The maps were initially based on RADARSAT-2 but 

can rely on RCM data from 2021, with more frequent acquisition.   

 

4. Algorithm 

The algorithm was coded to run in Python for ArcGIS. As an initial step, data sources were 

prepared to fit to the same schema. After that, the same code could be applied to any 

classification data source. Since the objective was to identify river sections that were classified 

as water, but that are actually ice-covered sections with water or wet snow on the surface, only 

the two classes, water and ice, were required to feed into the process. Hence, input data with 

more detailed classifications (e.g., ice cover types) were simplified to the same schema, in 

which water equals zero and ice equals one. When an input dataset contained a “water on ice” 

class, it was reclassified as ice, since the ice had already been identified. 

 

A second dataset for every image was created to identify cluster size. As SAR data contains 

noise in the form of speckle, using a significant cluster size of the water and ice classes 

prevented correcting single pixels that may just have been speckle. The cluster size was 

calculated and assigned to every pixel within a cluster. 
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The basis of the logic applied was that:  

 

If a pixel is classified as water in the current image, but classified as ice in the previous and 

the consecutive image; 

 

AND 

 

If a pixel belongs to a cluster larger than 10; 

 

It is reclassified as water on ice. 

 

To avoid computational costs, this logic was simplified as much as possible. As such, simple 

raster math was applied to the images. This avoided testing every pixel individually and was 

hence more efficient. The input image was reclassified into a binary dataset, where 0 equals 

water and 1 equals ice. ImageT is the image that is to be assessed. ImageT-1 is the image before 

the image in question, and ImageT+1 is the image after. During the first step, the following 

calculation was applied (Test 1): 

 

ImageT-1 – ImageT + ImageT+1 = ImageTest1 [1] 

 

When the sequence of classified images represents ice/water/ice, expressed in numbers as 

1/0/1, the result of the calculation would be 2, indicating a water or wet snow on ice event.   

 

The cluster size was calculated for all images as well, using the non-simplified polygon sizes 

of the water and ice classes. The cluster size was then reclassified as 0 when cluster size was 

not sufficient, and 1 when cluster size was sufficient, and then assigned to every pixel. Again, 

simple raster math was applied to test if cluster size was sufficient in every image, using (Test 

2): 

 

ClusterImageT-1 + ClusterImageT + ClusterImageT+1 = ImageTest2 [2] 

 

If cluster size was sufficient for a pixel on every image, the result would be 3.  

 

Finally, image testing was completed by combining (Test 3): 

 

ImageTest1 + ImageTest2 = ImageTest3 [3] 

 

When the sequence from test 1 was ice/water/ice, resulting in value 2, and cluster size was 

sufficient for a given pixel in all three images in test 2, resulting in value 3, the sum value was 

5.  

 

The resulting image was then reclassified from 5 to 50, representing water or wet snow on ice, 

with 0 being all other values. In the last step, the output image was merged with the original 

input. Images were mosaiced to the max value. This resulted in the output image from this 

algorithm only overwriting the input values in the case of water on ice, while other original 

classes stayed the same.  
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5. Results 

Three winters were analyzed for the Äshèyi Chù. Several game cameras were deployed by a 

consultant (Morrison Hershfield) along the river each winter. During the study period, eight 

overflow events (OE) lined up with Sentinel-1 overpasses. In two instances, ice was detected, 

and there was no need to apply the algorithm. Since the classification product of the Äshèyi 

Chù has some areas that are not classified as these were removed as speckle, it is possible that 

an OE area doesn’t have a classification in one of the three images. This occurred in three 

instances. During three of the eight other OEs, overflow was classified as water, and the images 

before and after as ice. In these cases, the algorithm was successfully applied.  

 

Figure 1 shows an OE sequence that occurred at km 18 (with Km 0 starting upstream at the 

tailrace of the Aishihik Generating Station) on January 26th, 2022. The left column contains 

game camera photos, exhibiting a largely snow-covered ice cover on January 14th, the overflow 

event on January 26th, and a return to previous conditions on February 7th.The corresponding 

Sentinel-1 classifications are shown on the right. The algorithm was applied to the three 

images. In the bottom right corner, we can see the results of the refined classification, including 

a water on ice class. When looking at the remaining areas that are included in the frame of the 

game cameras where the algorithm was applied, no sections were falsely corrected as water on 

ice.  

 

Three Unmanned Aerial Vehicle (UAV) orthomosaics were available near Sentinel-1 

overpasses. In one case, river ice and water were classified correctly, and no improvement was 

needed. In another image, there were two instances where snow on ice was classified as water. 

However, the area was also classified as water in the previous image. Hence, the algorithm 

could not be successfully applied. In the third image, areas with snow on ice were classified as 

water. In this case, the previous and following images contained the ice class for this area, and 

the algorithm was used to improve the classification. Figure 2 shows the orthomosaic from 

December 21st, 2021, with the improved classification overlayed below. In the northern end of 

the image, we can see a narrow ice dam that was previously classified as water. In the southern 

section of the image, we can observe a snow-covered area with some possible overflow, also 

previously classified as water. While it is impossible to obtain the moisture content of the snow 

from looking at UAV imagery, it is assumed that this was a wet-snow-on-ice condition. As 

above, no false corrections were observed.  
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Figure 1. Game camera photos for km 18 with 

corresponding Sentine-1 classifications for 14-01-2022 

(top), 26-01-022 (center), and 07-02-2022 (bottom). The 

improved classification includes the overflow event seen 

in the photo of 26-01-2022 (bottom right).  
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Since the number of available C-Core classified scenes for the Chu kon’ dëk was limited, and 

a classification before and after the image in question was required for this algorithm, only a 

few relevant examples were used for this project. We were able to track down an example in 

the 2018 data to test the approach.  

 

The top row in Figure 3 shows Copernicus Sentinel-2 2018 visible images of the corresponding 

classification dates. The image in question is from May 3rd, 2024, shown in the center column 

of the figure. While some open water exists within the scene, wet snow and water on ice 

received the same classification. We can see in the classification scheme, that C-Core 

acknowledges the difficulty of distinguishing between open water and water on ice, as the class 

is named “Water or possibly water on ice”. The improved classification after application of the 

algorithm is shown at the bottom.  

 

Overall, the algorithm was able to detect locations of wet snow and water on ice, while 

maintaining locations of open water. There are some locations that do not display the new class. 

This is due to these areas also being classified as water in the May 1st image, even though they 

displayed snow on ice. 

 

 

Figure 2. Orthomosaic and 

improved classification for 

December 21st, 2021. The 

snow seen in the image is 

assumed to be saturated and 

have caused the initial water 

classification. 
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6. Discussion 

This research project aims to improve the accuracy of ice condition classification using radar 

products using logic. As a first phase to this project, we explored the development of a simple 

algorithm that reclassifies water as water-on-ice, especially during the mid-winter period, 

where ice is unlikely to melt and then reform quickly, but where overflow events or wet-snow 

events are common. Optical imagery, especially when viewed in false-colour, can easily reveal 

this type of event, but unfortunately, cloud coverage and the short days limit the use of Sentinel-

2 imagery during winter in Yukon. 

Figure 3. Ice cover 

progression on the Chu 

kon’ dëk 40 km upstream 

of Dawson. Sentinel-2 

images (top row) and C-

Core classifications 

(second row) on May 1st 

(left column), May 3rd 

(center column) and May 

6th, 2024 (left column), 

with the improved 

classification in the center 

bottom. 

2018-05-01 2018-05-03 2018-05-06 

2018-05-01 2018-05-03 

2018-05-03 

2018-05-06 
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The algorithm presented in this paper takes a sequence of images into account to improve the 

channel classification. For the case of the Äshèyi Chù, although the river is very narrow and 

somewhat steep, this approach seemed appropriate, especially considering that Sentinel-1A 

images are 12 days apart, and overflow or wet snow events are not likely to persist over this 

time period. When a data source with a more frequent acquisition period (e.g., RCM) is used 

for classification, however, several images before and after the image in question should be 

integrated in the algorithm. Air temperature data, which are readily available, could also be 

used to discard some water classifications.  

 

One limitation of this approach, as presented in this paper, is that it can’t be applied in an 

operational, or near real time context in which imagery interpretation would be required as 

soon as possible after the acquisition of the radar image. Since at least one image after the 

image of interest is required, a delay is induced, which represents at least 12 days when relying 

on the Sentinel-1 platform (keeping in mind that it is down to one satellite). This approach is 

hence mainly of use when analyzing river ice patterns over a long period, which is the case for 

our team in the context of creating ice coverage data for river ice model development and 

calibration.   

 

More classification errors are likely to occur during breakup. When there is a sequence of ice 

cover, followed by open water, followed by an ice jam, the open water would be incorrectly 

changed to flooded ice (which is the case of some pixels in Figure 3). This could be mitigated 

by taking the roughness of the detected ice into account. Consequently, if the backscatter 

suggests an increased surface roughness, which means the scene is likely to contain an ice jam, 

the image sequence would be excluded from the algorithm. 

 

Future steps of this research could involve: 1. Including hydrometeorological information into 

the classification, 2. Adding a roughness component to improve the reliability of the 

classification, 3. Testing RCM products and applying the methodology to other rivers where 

users see benefits. 4. Expanding the time series where appropriate. 

 

7. Conclusion 

This paper presented a thought experiment of how radar-based river ice classifications can be 

improved beyond backscatter. The radar community acknowledges the limitations around 

detecting ice when the ice is covered by a layer of water or wet snow. Within the C-Core 

classification for example, the first class is labelled “Water or possible water on ice”, 

accounting for the fact that the radar interacts with the topmost layer. In this paper we show 

that creative thinking opens up the possibility to refine classifications in a way that contains 

important and accurate information for the end-user, without the need to use multiple other 

sources of information to confirm river ice conditions.  
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