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A logic-driven assessment to refine SAR-based river ice classifications.
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Radar remote sensing provides useful information to differentiate river ice conditions and ice
cover types in large rivers. However, false classifications are common, especially at the end of
winter, due to water on ice as well as wet snow. These situations can present challenges to end
users, such as water resources managers and flood forecasters. In this study, we design a logic-
driven assessment to refine existing classifications to distinguish between areas of water or wet
snow on ice and open water. It is uncommon for river segments to experience ice cover,
followed by open water, then ice cover again, within three consecutive radar images. Our
decision tree analysis therefore assumes that river segments that are classified as water, but
classified as ice in the radar images before and after, represent water or wet snow on ice. We
examine the potential of this approach on two rivers in the Yukon Territory, Canada. The
Asheyi Chu (Aishihik River) is a narrow, regulated river with a relatively steep slope (0.3%)
and commonly experiences flood issues at freeze-up. The Chu kon’ dék (Yukon River at
Dawson) is a much larger, low gradient (0.04%) river with a history of ice jam related flooding.
Pixels are tested based on this concept, and a clustering approach is applied to reduce noise.
The success of the algorithm is assessed using drone imagery and Sentinel-2 optical imagery.
We show that using logic can offer ways to refine river ice classification, that is meaningful to
the end user.
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1. Introduction

Winter hydrological processes can have significant impacts on cold region ecosystems (Prowse
2001) and infrastructure (Burrell et al. 2021). In turn, flow regulation during months of high
energy demand is also known to affect ice processes (Huokuna et al. 2022) with potential
consequences on channel stability and habitats. Understanding the impact of high and varying
streamflow on river ice and hydraulic conditions can be challenging, especially at locations
with limited road access. Therefore, remote sensing represents an opportunity to collect
valuable river ice coverage data and observations that can inform short- and long-term decision
making.

Ice detection using radar waves is based on differences in signal backscatter for surfaces of
different roughness. Calm water is a specular surface, which reflects the radar signal away from
the satellite. This will show up as a dark area in the resulting image, since no or minimal signal
is received by the satellite. Ice, however, has varying degrees of surface roughness, which
causes the radar signal to interact with the surface and consequently results in backscatter of a
portion of the signal to the satellite, with pixel brightness proportional to the backscatter ratio.
In principle, a smooth ice cover, such as sheet ice, results in some backscatter, while a rough
ice cover, such as an ice jam, causes more backscatter (Palomaki and Sproles 2022). This basic
concept allows us to produce classifications that distinguish open water from ice cover, and
even different types of ice, uncompromised by cloud cover or daylength. Over the years,
several jurisdictions have used satellite-based ice maps to provide users with critical river
channel information for purposes such as supporting winter navigation (e.g., on the St.
Lawrence River and Estuary) or forecasting water level variations caused by a sudden change
in ice condition (e.g., on the Peace River in Alberta).

Classification, however, becomes more complex when we find water or wet snow on top of an
ice cover (Stonevicius, Uselis, and Grendaite 2022). During a water on ice event, the radar
waves will interact with the water on top of the ice instead of the ice underneath (van der
Sanden, Drouin, and Geldsetzer 2021). C-band synthetic aperture radar (SAR) products are
commonly used for river ice detection, due to their high spatial resolution and frequent repeat
cycle. When snow is dry, it is basically invisible to C-band waves (wavelength of 5.6 cm), and
the waves interact with the surface underneath instead. If snow is wet and hence saturated,
however, the interaction of the waves with snow is similar to that of water, and the signal is
reflected away from the satellite (Bernier et al. 2017; Lievens et al. 2019). As a result, during
a water or wet snow on ice event, minimal signal will be returned to the satellite and the spectral
signature is like the one of calm water (van der Sanden et al. 2021). This presents challenges
for the end users, such as flood forecasters, who need to know if a section of river is still ice
covered or if the ice cover has moved downstream.

Since wet snow or water on ice conditions push the boundaries of the satellite capabilities, we
propose here to make use of knowledge we have about rivers and ice cover formation to drive
a refinement of classification using logic. For instance, it is well known that an ice cover,
especially when it is thick and complete, cannot melt suddenly when upstream ice is present
over a long distance, since any heat carried by the river would melt the upstream ice cover.
Moreover, a sudden local breakup event usually results from a water level or flow fluctuation,
with pieces of broken ice cover (i.e., ice floes) accumulating somewhere downstream. Finally,
a complete ice cover is not likely to form overnight if there is a complete ice cover in the river
reach located immediately upstream. Since several processes may cause water to accumulate
on the ice cover (e.g. an increase in discharge in a small river, rain-on-snow, high air



temperatures, etc.), it can be assumed that the ice cover, although no longer detected by radar,
is still in place and relatively intact.

In this paper, we test a logic-driven approach to refine river ice classification. We examine
river ice classification products as a time series and use an algorithm to look at radar
classification product sequences that exhibit ice, then water, and then ice again.

2. Study Area

Two rivers were examined in this study — the Asheyi Chu (Aishihik River), which is a small
river used for power generation in southwest Yukon, and the Chu kon’ dék (Yukon River at
Dawson), which is the major watercourse flowing through the Yukon Territory. Both rivers
experience flooding issues due to ice jams and are hence examined for changes in ice cover
conditions.

The Asheyi Chu (Aishihik River) is located on the traditional territory of the Champagne and
Aishihik First Nations (CAFN), in the southwest of the Yukon Territory, Canada. It is fed
primarily by Asheyi Man (Aishihik Lake). The CAFN settlement of Asheyi (Aishihik) is
situated at the north end of the lake. The name “Asheyi” is of Tlingit origin and means “the
head of the lake” (Champagne and Aishihik First Nations 2023). The watershed area of the
river at Canyon is 4,300 km (Mcparland, Mckillop, and Pearson 2021). It drains into the
Dezadeash River, which outlets into the Alsek River and then into the North Pacific Ocean.
The Asheyi Chu is a narrow (15m to 50m wide) river with a relatively steep slope (0.3%). This
river is highly dynamic, with a frequency of 0.08 to 0.26 meander cut-offs/year. In 1975, the
Ashéyi Chll became a regulated river for power hydroelectricity production with the
establishment of the Aishihik Generating Station (AGS) (Mcparland et al. 2021). Winter flows,
largely imposed by daily fluctuations in energy demand, have historically varied from less than
5 m®/s to more than 20 m®/s. From confluence of the East- and West-Aishihik Rivers, the river
flows for approximately 30 km and passes through the CAFN community of Canyon. Flooding
issues occur at that location, but also at several floodplain locations, mainly due to mid-winter
ice jams, with consequent overflow and aufeis development.

The Chu kon’ dék is the most significant and largest river of the territory. The origin of its
waters extends as far as the Atlin Lake area of northern British Colombia, more specifically
from the discharge coming out of the Juneau Icefield. The river flows through the Yukon
Territory and the U.S. state of Alaska, covering a distance of around 3185 km. Previous work
suggests that the gradient of the river is around 0.05% when considering the 900 km stretch of
channel from Whitehorse, the capital of the Yukon Territory, to the Alaska Border (Saal, Boyd,
and Turcotte 2023). Dawson City, located along the Taga Shaw, is susceptible to both ice jam
and open water flooding. The Chu kon’ dék at Dawson City is approximately 360 m wide and
has a depth of about 4 m with an annual flow ranging from about 500 m%/s at the end of winter
to about 10,000 m®/s in June. The community has been subject to several floods, with the 1979
ice jam flood being the most notorious event on record. Although mitigation structures exist
around the community, flood risk can still be reduced, including through flood forecasting
(Turcotte and Saal 2022).

3. Input Data Sources

Two classification products we tested. The product of the narrow Asheyi Chu is based on
Sentinel-1 vertical-vertical (VV) imagery, while the product of the Chu kon’ dék stems from
Radarsat-2 and Radarsat Constellation Mission (RCM) data.



The first classification product was created as part of a research project conducted by YukonU
on the Ashéyi Chu. The objective of the project was to develop a river ice model that can
inform flow management in a perspective of reducing downstream impacts (Fang et al. 2023;
Saal, Turcotte, et al. 2023) Since river ice model development depends on the availability of
data about ice coverage conditions on the Ashéyi Chu, an algorithm was developed to detect
ice and water using Sentinel-1 imagery.

One goal was to identify locations of early season ice bridging, therefore distinguishing the
specific type of ice was not necessary. Additionally, ice type would have been difficult to
identify, given the small width of the river. While SAR technology is applied to large rivers of
Canada, the ability of Sentinel-1 to detect ice on a narrow, 15 to 50m-wide river, had, to our
knowledge, not been previously explored. In this hydrological context, Sentinel-1’s 10 m grid
cells in interferometric wide swath appear coarse. This is further complicated by the appearance
of speckle. While filters are applied when working on wider rivers, we did not have this luxury
due to the decrease in resolution resulting from filtering. The approach that was applied instead
was to calculate a significant cluster size of a given classification. If a class cluster was below
threshold, the area was removed as speckle and did not receive a classification. The resulting
product contains the classes water and ice, as well as no data areas that were removed as
speckle. Another layer of complexity materialized after December 23, 2021, when the
Sentinel-1 platform lost half of its capacity due to the failure of the Sentinel-1B satellite
(European Space Agency 2023). As a result, only Sentinel-1 imagery of the ascending path
was explored during this study.

C-Core, a company specialized in remote sensing based in Newfoundland in Eastern Canada,
started to produce ice maps on the Chu kon’ dék near Dawson City for the Yukon Government
(Department of Environment) in 2015. The maps were initially based on RADARSAT-2 but
can rely on RCM data from 2021, with more frequent acquisition.

4. Algorithm

The algorithm was coded to run in Python for ArcGIS. As an initial step, data sources were
prepared to fit to the same schema. After that, the same code could be applied to any
classification data source. Since the objective was to identify river sections that were classified
as water, but that are actually ice-covered sections with water or wet snow on the surface, only
the two classes, water and ice, were required to feed into the process. Hence, input data with
more detailed classifications (e.g., ice cover types) were simplified to the same schema, in
which water equals zero and ice equals one. When an input dataset contained a “water on ice”
class, it was reclassified as ice, since the ice had already been identified.

A second dataset for every image was created to identify cluster size. As SAR data contains
noise in the form of speckle, using a significant cluster size of the water and ice classes
prevented correcting single pixels that may just have been speckle. The cluster size was
calculated and assigned to every pixel within a cluster.



The basis of the logic applied was that:

If a pixel is classified as water in the current image, but classified as ice in the previous and
the consecutive image;

AND
If a pixel belongs to a cluster larger than 10;
It is reclassified as water on ice.

To avoid computational costs, this logic was simplified as much as possible. As such, simple
raster math was applied to the images. This avoided testing every pixel individually and was
hence more efficient. The input image was reclassified into a binary dataset, where 0 equals
water and 1 equals ice. Imager is the image that is to be assessed. Imager.-1 is the image before
the image in question, and Imager+1 is the image after. During the first step, the following
calculation was applied (Test 1):

Imager-1 — Imager + Imager+1 = ImageTesty [1]

When the sequence of classified images represents ice/water/ice, expressed in numbers as
1/0/1, the result of the calculation would be 2, indicating a water or wet snow on ice event.

The cluster size was calculated for all images as well, using the non-simplified polygon sizes
of the water and ice classes. The cluster size was then reclassified as 0 when cluster size was
not sufficient, and 1 when cluster size was sufficient, and then assigned to every pixel. Again,
simple raster math was applied to test if cluster size was sufficient in every image, using (Test
2):

Clusterlmager.1 + Clusterimager + Clusterimager+1 = ImageTest2 [2]
If cluster size was sufficient for a pixel on every image, the result would be 3.
Finally, image testing was completed by combining (Test 3):

ImageTest: + ImageTest> = ImageTests [3]
When the sequence from test 1 was ice/water/ice, resulting in value 2, and cluster size was
sufficient for a given pixel in all three images in test 2, resulting in value 3, the sum value was
5.
The resulting image was then reclassified from 5 to 50, representing water or wet snow on ice,
with 0 being all other values. In the last step, the output image was merged with the original
input. Images were mosaiced to the max value. This resulted in the output image from this

algorithm only overwriting the input values in the case of water on ice, while other original
classes stayed the same.



5. Results

Three winters were analyzed for the Asheéyi Chui. Several game cameras were deployed by a
consultant (Morrison Hershfield) along the river each winter. During the study period, eight
overflow events (OE) lined up with Sentinel-1 overpasses. In two instances, ice was detected,
and there was no need to apply the algorithm. Since the classification product of the Ashéyi
Chu has some areas that are not classified as these were removed as speckle, it is possible that
an OE area doesn’t have a classification in one of the three images. This occurred in three
instances. During three of the eight other OEs, overflow was classified as water, and the images
before and after as ice. In these cases, the algorithm was successfully applied.

Figure 1 shows an OE sequence that occurred at km 18 (with Km 0 starting upstream at the
tailrace of the Aishihik Generating Station) on January 26, 2022. The left column contains
game camera photos, exhibiting a largely snow-covered ice cover on January 14", the overflow
event on January 26™, and a return to previous conditions on February 7"".The corresponding
Sentinel-1 classifications are shown on the right. The algorithm was applied to the three
images. In the bottom right corner, we can see the results of the refined classification, including
a water on ice class. When looking at the remaining areas that are included in the frame of the
game cameras where the algorithm was applied, no sections were falsely corrected as water on
ice.

Three Unmanned Aerial Vehicle (UAV) orthomosaics were available near Sentinel-1
overpasses. In one case, river ice and water were classified correctly, and no improvement was
needed. In another image, there were two instances where snow on ice was classified as water.
However, the area was also classified as water in the previous image. Hence, the algorithm
could not be successfully applied. In the third image, areas with snow on ice were classified as
water. In this case, the previous and following images contained the ice class for this area, and
the algorithm was used to improve the classification. Figure 2 shows the orthomosaic from
December 21%, 2021, with the improved classification overlayed below. In the northern end of
the image, we can see a narrow ice dam that was previously classified as water. In the southern
section of the image, we can observe a snow-covered area with some possible overflow, also
previously classified as water. While it is impossible to obtain the moisture content of the snow
from looking at UAV imagery, it is assumed that this was a wet-snow-on-ice condition. As
above, no false corrections were observed.
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Figure 1. Game camera photos for km 18 with
corresponding Sentine-1 classifications for 14-01-2022
(top), 26-01-022 (center), and 07-02-2022 (bottom). The
improved classification includes the overflow event seen
in the photo of 26-01-2022 (bottom right).
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Figure 2. Orthomosaic and
improved classification for
December 21%, 2021. The
snow seen in the image is
assumed to be saturated and
have caused the initial water
classification.

Since the number of available C-Core classified scenes for the Chu kon’ dék was limited, and
a classification before and after the image in question was required for this algorithm, only a
few relevant examples were used for this project. We were able to track down an example in
the 2018 data to test the approach.

The top row in Figure 3 shows Copernicus Sentinel-2 2018 visible images of the corresponding
classification dates. The image in question is from May 3, 2024, shown in the center column
of the figure. While some open water exists within the scene, wet snow and water on ice
received the same classification. We can see in the classification scheme, that C-Core
acknowledges the difficulty of distinguishing between open water and water on ice, as the class
is named “Water or possibly water on ice”. The improved classification after application of the
algorithm is shown at the bottom.

Overall, the algorithm was able to detect locations of wet snow and water on ice, while
maintaining locations of open water. There are some locations that do not display the new class.
This is due to these areas also being classified as water in the May 1% image, even though they
displayed snow on ice.
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6. Discussion

This research project aims to improve the accuracy of ice condition classification using radar
products using logic. As a first phase to this project, we explored the development of a simple
algorithm that reclassifies water as water-on-ice, especially during the mid-winter period,
where ice is unlikely to melt and then reform quickly, but where overflow events or wet-snow
events are common. Optical imagery, especially when viewed in false-colour, can easily reveal
this type of event, but unfortunately, cloud coverage and the short days limit the use of Sentinel-
2 imagery during winter in Yukon.



The algorithm presented in this paper takes a sequence of images into account to improve the
channel classification. For the case of the Ashéyi Chu, although the river is very narrow and
somewhat steep, this approach seemed appropriate, especially considering that Sentinel-1A
images are 12 days apart, and overflow or wet snow events are not likely to persist over this
time period. When a data source with a more frequent acquisition period (e.g., RCM) is used
for classification, however, several images before and after the image in question should be
integrated in the algorithm. Air temperature data, which are readily available, could also be
used to discard some water classifications.

One limitation of this approach, as presented in this paper, is that it can’t be applied in an
operational, or near real time context in which imagery interpretation would be required as
soon as possible after the acquisition of the radar image. Since at least one image after the
image of interest is required, a delay is induced, which represents at least 12 days when relying
on the Sentinel-1 platform (keeping in mind that it is down to one satellite). This approach is
hence mainly of use when analyzing river ice patterns over a long period, which is the case for
our team in the context of creating ice coverage data for river ice model development and
calibration.

More classification errors are likely to occur during breakup. When there is a sequence of ice
cover, followed by open water, followed by an ice jam, the open water would be incorrectly
changed to flooded ice (which is the case of some pixels in Figure 3). This could be mitigated
by taking the roughness of the detected ice into account. Consequently, if the backscatter
suggests an increased surface roughness, which means the scene is likely to contain an ice jam,
the image sequence would be excluded from the algorithm.

Future steps of this research could involve: 1. Including hydrometeorological information into
the classification, 2. Adding a roughness component to improve the reliability of the
classification, 3. Testing RCM products and applying the methodology to other rivers where
users see benefits. 4. Expanding the time series where appropriate.

7. Conclusion

This paper presented a thought experiment of how radar-based river ice classifications can be
improved beyond backscatter. The radar community acknowledges the limitations around
detecting ice when the ice is covered by a layer of water or wet snow. Within the C-Core
classification for example, the first class is labelled “Water or possible water on ice”,
accounting for the fact that the radar interacts with the topmost layer. In this paper we show
that creative thinking opens up the possibility to refine classifications in a way that contains
important and accurate information for the end-user, without the need to use multiple other
sources of information to confirm river ice conditions.
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